GT3 series Multi-function Timers

Wide Variety Including OFF Delay and Star-Delta

- Universal AC power voltage 100 to 240 V AC
- Solid-state CMOS circuitry ensures high accuracy
- Easy-to-view operation indicator
- DIN 48mm square panel mount adapter for snap mounting
- Complies with safety standards. UL/c-UL listed.
- Complies with EN standard

[Multi-mode]
- Instantaneous operation at zero setting
- Multi-mode, and universal AC power voltage cover 96 types by one timer

Multi-Mode (Analog Setting)

For details, see pages 2 to 7 .

Operation Mode		Model	Contact	Time Range	Output	Operating Voltage	Part No.	
On Delay Interval ON Cycle OFF Cycle ON		GT3A-1	Delayed SPDT	0.1 sec to 180 hours	$\begin{aligned} & 240 \mathrm{VAC}, 3 \mathrm{~A} \\ & 120 \mathrm{~V} \text { AC/ } \\ & 30 \mathrm{~V}, 5 \mathrm{~A} \end{aligned}$	100 to 240V AC	GT3A-1AF20	
		GT3A-2	Delayed SPDT + Instantaneous SPDT			100 to 240V AC	GT3A-2AF20	
		24 V AC/24V DC				GT3A-2AD24		
		GT3A-3	Delayed DPDT		240V AC/	100 to 240V AC	GT3A-3AF20	
		24V DC, 5A			24 V AC/24V DC	GT3A-3AD24		
ON Delay	With Input		GT3A-4	Delayed DPDT (11P)	0.1 sec to 180 hours	$\begin{aligned} & 240 \mathrm{~V} \text { AC/ } \\ & 24 \mathrm{~V} \text { DC, } 5 \mathrm{~A} \end{aligned}$	100 to 240V AC	GT3A-4AF20
Cycle Signal ON/OFF Delay Signal OFF Delay		24 V AC/24V DC					GT3A-4AD24	
Interval ON			100 to 240V AC				GT3A-5AF20	
Signal ON/OFF Delay Signal OFF Delay	With Input	GT3A-5	24 V AC/24V DC				GT3A-5AD24	
One Shot	With Input	GT3A-6	100 to 240V AC				GT3A-6AF20	
One Shot Signal ON/OFF Delay			24 V AC/24V DC				GT3A-6AD24	

OFF Delay

Operation Mode		Model	Contact	Time Range	Output	Operating Voltage	Part No.
Power OFF Delay	With	GT3F-1	Delayed SPDT	$\begin{aligned} & 0.1 \mathrm{sec} \text { to } \\ & 600 \mathrm{sec} \end{aligned}$	250 V AC/	100 to 240V AC	GT3F-1AF20
	Reset Input				24 V DC, 5A	24 V AC/24V DC	GT3F-1AD24
	Without	GT3F-2	Delayed DPDT		250 V AC/	100 to 240V AC	GT3F-2AF20
	Reset Input				24 V DC, 3A	24 V AC/24V DC	GT3F-2AD24

Star-Delta
For details, see pages 10 to 11.

Operation Mode	Model	Contact	Time Range	Output	Operating Voltage	Part No.
Star-Delta	GT3S-1	Delayed Star: SPST-NO Delta: SPST-NO	Star: 0.05 to 100 sec Star-Delta: 0.05 sec 0.1 sec 0.25 sec 0.5 sec	$\begin{aligned} & 250 \mathrm{~V} \text { AC/ } \\ & 30 \mathrm{DC}, 5 \mathrm{~A} \end{aligned}$	100 to 240V AC	GT3S-1AF20
	GT3S-2	Delayed Star: SPST-NO Delta: SPST-NO Instantaneous: SPST-NO				GT3S-2AF20

Twin-Timer

For details, see pages 12 to 13 .

Operation Mode	Model	Contact	Time Range	Output	Operating Voltage	Part No.
Serial Activation Coarse/Fine Adjustment Setting Instantaneous Cycle Cycle Cycle Inversion Interval ON Interval ON Delay Serial Interval ON	GT3W-A	Delayed SPDT + Delayed SPDT	T1: 0.1 sec to 6 hours	$\begin{aligned} & 240 \mathrm{VAC}, 3 \mathrm{~A} \\ & 120 \mathrm{~V} \text { AC/ } \\ & 30 \mathrm{VC}, 5 \mathrm{~A} \end{aligned}$	100 to 240V AC	GT3W-A11AF20N
			T2: 0.1 sec to 6 hours		24 V AC/24V DC	GT3W-A11AD24N
			T1: 0.1 sec to 6 hours		100 to 240V AC	GT3W-A13AF20N
			T2: 0.1 sec to 300 hours		24 V AC/24V DC	GT3W-A13AD24N
			T1: 0.1 sec to 300 hours		100 to 240V AC	GT3W-A31AF20N
			T2: 0.1 sec to 6 hours		24 V AC/24V DC	GT3W-A31AD24N
			T1: 0.1 sec to 300 hours		100 to 240V AC	GT3W-A33AF20N
			T2: 0.1 sec to 300 hours		24V AC/24V DC	GT3W-A33AD24N

GT3A-1, -2, -3 (8-Pin)

Four Selectable Operation Modes in One Timer: ON Delay, Interval ON, Cycle, Cycle ON

(1) Operation Mode	Rated Voltage	Time Ranges	Output	Contact	Part No.
	100 to 240V AC	0.1 sec to 180 hours See Time Ranges for details.	240V AC, 3A 120 V AC/30V DC, 5 A (resistive load)	Delayed SPDT	GT3A-1AF20
A: ON Delay	100 to 240V AC			Delayed SPDT + Instantaneous SPDT	GT3A-2AF20
	24 V AC/24V DC				GT3A-2AD24
D: Cycle ON	100 to 240V AC		240 V AC/24V DC, 5A (resistive load)	Delayed DPDT	GT3A-3AF20
	24 V AC/24V DC				GT3A-3AD24

Time Ranges

(2) Range (3) Dial	$0-1$	$0-3$	$0-6$	$0-18$
1 S	0.1 sec to 1 sec	0.1 sec to 3 sec	0.1 sec to 6 sec	0.2 sec to 18 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	0.6 sec to 60 sec	1.8 sec to 180 sec
	6 sec to 10 min	18 sec to 30 min	36 sec to 60 min	108 sec to 180 min
10 H	6 min to 10 hours	18 min to 30 hours	36 min to 60 hours	108 min to 180 hours

Contact Ratings

Model	GT3A-1, GT3A-2	GT3A-3
Rated Load	240 V AC, 3A (resistive load) 120V AC/30V DC, 5 A (resistive load)	240 V AC/24V DC, 5A (resistive load)
Maximum Switching Power	AC: 960VA DC: 120 W	AC: 1200VA DC: 120 W
Maximum Switching Voltage	250 V AC/150V DC	
Maximum Switching Current	5 A	
Maximum Switching Frequency	600 operations/hour	600 operations/hour
Minimum Applicable Load	5 V DC, 10 mA (reference value)	
External Protection Element	Fuse $250 \mathrm{~V}, 5 \mathrm{~A}$	
Life	Electrical	100,000 operations minimum (rated load)
	Mechanical	$20,000,000$ operations minimum

General Specifications

Model		GT3A-1	GT3A-2	GT3A-3
Operation System		Solid-state CMOS circuitry		
Operation		Multi-Mode		
Time Range		0.1 sec to 180 hours		
Pollution Degree		2 (IEC60664-1)		
Overvoltage Category		III (IEC60664-1)		
Rated Voltage	AF20	100 to 240 V AC ($50 / 60 \mathrm{~Hz}$)		
	AD24	24 V AC (50/60Hz)/24V DC		
Voltage Range	AF20	85 to 264V AC (50/60Hz)		
	AD24	20.4 to 26.4V AC ($50 / 60 \mathrm{~Hz}$)/21.6 to 26.4V DC		
Reset Voltage		Rated voltage $\times 10 \%$ minimum		
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing)		
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity		35 to 85\% RH (no condensation)		
Storage Humidity		35 to 85\% RH (no condensation)		
Altitude		0 to 2000m (operation), 0 to 3000m (transportation)		
Reset Time		60 ms maximum		
Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms} \mathrm{maximum} \mathrm{(Note)}$		
Voltage Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms} \mathrm{maximum} \mathrm{(Note)}$		
Temperature Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ maximum (Note)		
Setting Error		$\pm 10 \%$ maximum		
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)		
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 750 V AC, 1 minute (GT3A-1, 2) 1000 V AC, 1 minute (GT3A-3)		
Vibration Resistance		GT3A-1/-2/-3: Damage limits: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions GT3A-1/-2: Operating extremes: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions GT3A-3: Operating extremes: 10 to 55 Hz , amplitude 0.41 mm , 2 hours each in 3 directions		
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$, Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}$, 3 shocks each in 6 directions		
Degree of Protection		IP40 (timer), IP20 (socket) (IEC60529)		
	이 100V AC/60Hz	2.9VA	2.5VA	2.2VA
	边 $200 \mathrm{VAC} / 60 \mathrm{~Hz}$	4.7VA	4.3VA	4.0VA
	AD24 (AC/DC)	$1.3 \mathrm{VA} / 0.5 \mathrm{~W}$	2.0VA/0.8W	1.8VA/0.7W
Dimensions		$40 \mathrm{H} \times 36 \mathrm{~W} \times 72.2 \mathrm{D} \mathrm{mm}$		
Weight (approx.)		63 g	73 g	79 g

Note: The largest value becomes the error against a preset value depending on the time range.

Operation Chart

GT3A-4, -5, -6 (11-Pin)

Four Selectable Operation Modes with Start, Gate, and Reset Inputs for External Control

(1) Operation Mode		Rated Voltage Code	Time Ranges	Output	Contact	Input	Part No.
A: ON Delay	B: Cycle OFF	100 to 240V AC	0.1 sec to 180 hours See Time Ranges for details	240V AC, 5A 24V DC, 5A (resistive load)	Delayed DPDT	Start Reset Gate	GT3A-4AF20
C: Signal ON Delay	D: Signal OFF Delay	24 V AC/24V DC					GT3A-4AD24
A: Interval ON C: Signal ON/OFF Delay	B: One-Shot Cycle, D: Signal OFF Delay	100 to 240V AC					GT3A-5AF20
		24 V AC/24V DC					GT3A-5AD24
A: One-Shot	B: One-Shot ON Delay	100 to 240V AC					GT3A-6AF20
C: One-Shot	D: Signal ON/OFF Delay	24 V AC/24V DC					GT3A-6AD24

Time Ranges

(2) Range (3) Dial	$0-1$	$0-3$	$0-6$	$0-18$
1 S	0.1 sec to 1 sec	0.1 sec to 3 sec	0.1 sec to 6 sec	0.2 sec to 18 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	0.6 sec to 60 sec	1.8 sec to 180 sec
10 M	6 sec to 10 min	18 sec to 30 min	36 sec to 60 min	108 sec to 180 min
	6 min to 10 hours	18 min to 30 hours	36 min to 60 hours	108 min to 180 hours

Contact Ratings

Rated Load	$240 \mathrm{~V} \mathrm{AC} / 24 \mathrm{~V} \mathrm{DC,5A} \mathrm{(resistive} \mathrm{load)}$
Maximum Switching Power	AC: 1200 VA DC: 120 W
Maximum Switching Voltage	250 V AC/150V DC
Maximum Switching Current	5 A
Maximum Switching Frequency	600 operations/hour
Minimum Applicable Load	$5 \mathrm{~V} \mathrm{DC,10mA} \mathrm{(reference} \mathrm{value)}$
External Protection Element	Fuse $250 \mathrm{~V}, 5 \mathrm{~A}$
Life	Electrical
	Mechanical

Input Specifications

Start Input	The start input initiates delayed operation and controls output status.	No-voltage contact inputs and NPN open collector transistor
Reset Input	When the reset input goes on (L level), the timer is reset to the inputs are applicable. original time (time at power-on).	
24V DC, 1 mA maximum Input response time: Gate Input	The time delay operation is suspended while the gate input is on (L level).	ms maximum

General Specifications

Operation System		Solid-state CMOS circuitry
Operation		Multi-mode with inputs (11 pins)
Time Range		0.1 sec to 180 hours
Pollution Degree		2 (IEC60664-1)
Overvoltage Category		III (IEC60664-1)
Rated Voltage	AF20	100 to 240 V AC ($50 / 60 \mathrm{~Hz}$)
	AD24	24 V AC (50/60Hz)/24V DC
Voltage Range	AF20	85 to 264V AC (50/60Hz)
	AD24	20.4 to 26.4V AC (50/60Hz)/21.6 to 26.4V DC
Reset Voltage		Rated voltage $\times 10 \%$ minimum
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing)
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		35 to 85\% RH (no condensation)
Storage Humidity		35 to 85\% RH (no condensation)
Altitude		0 to 2000 m (operation) 0 to 3000 m (transportation)
Reset Time		60 ms maximum
Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Voltage Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Temperature Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Setting Error		$\pm 10 \%$ maximum
Insulation Resistance		100M Ω minimum (500 V DC megger)
Dielectric Strength		Between power and output terminals: 2000 V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute
Vibration Resistance		Damage Limits: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions Operating extremes: 10 to 55 Hz , amplitude 0.41 mm , 2 hour each in 3 directions
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}$ 3 shocks each in 6 directions
Degree of Protection		IP40 (timer), IP20 (socket) (IEC60529)
Power Consumption (Approx.)	AF20	2.2VA (100V AC/60Hz), 4.1VA (200V AC/60Hz)
	AD24	1.8 VA (AC)/0.7W (DC)
Dimensions		$40 \mathrm{H} \times 36 \mathrm{~W} \times 72.2 \mathrm{D} \mathrm{mm}$
Weight (approx.)		80 g

Note: The largest value becomes the error against a preset value depending on the time range.

Operation Chart
GT3A-4 \square
Note: While the gate input is on during time delay operation, the POWER indicator flashing slows down.

GT3A-5 \square

GT3A-6 \square

GT3F-1/GT3F-2 (8-Pin)

Specifically designed for Power OFF Delay. Reset Inputs are available.

(1) Operation Mode	Rated Voltage Code	Time Ranges	Output	Contact	Input	Part No.
Power OFF Delay	100 to 240V AC	0.1 sec to 600 sec	250 V AC/24V DC, 5A	Delayed SPDT	Reset	GT3F-1AF20
	24 V AC/24V DC					GT3F-1AD24
	100 to 240V AC		250 V AC/24V DC, 3A	Delayed DPDT	Without	GT3F-2AF20
	24 V AC/24V DC					GT3F-2AD24

Time Ranges

GT3F-1/GT3F-2

(2) Range Dial	$0-1$	$0-3$	$0-18$	$0-60$
1 S	0.1 sec to 1 sec	0.1 sec to 3 sec	0.2 sec to 18 sec	0.6 sec to 60 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	1.8 sec to 180 sec	6 sec to 600 sec

Timeout Repeat Cycle	3 sec minimum
Reset Input Repeat Cycle	3 sec minimum

Contact Ratings

Model		GT3F-1	GT3F-2
Rated Load		250V AC/24V DC, 5A (resistive load)	250V AC/24V DC, 3A (resistive load)
Minimum Switching Power		AC: 1250VA DC: 150W	$\begin{aligned} & \text { AC: 750VA } \\ & \text { DC: } 90 W \end{aligned}$
Minimum Switching Voltage		250V AC/125V DC	
Minimum Switching Current		5A	3A
Maximum Switching Frequency		1800 operations/hour	
Minimum Applicable Load		5 V DC, 10 mA	5 V DC, 100 mA
External Protection Element		Fuse 250V, 5A	Fuse 250V, 3A
Life	Electrical	100,000 operation (rated load)	minimum
	Mechanical	3,000,000 operatio	minimum

Input Specifications

Reset Input	The contact is reset by turning the reset input on (L level). No-voltage contact input and NPN open collector transistor input are applicable. 6V DC, 0.6 mA maximum Input Response Time (AC): ON: 50 ms maximum OFF: 1 sec maximum

General Specifications

Note 1: An inrush current flows during minimum power application time. AF20: Approx. 0.4A, AD24: Approx. 1.2A
Note 2: The largest value becomes the error against a preset value depending on the time range.

Operation Chart

Note 1: GT3F timers use a latching relay for the output relay. Therefore, if it is dropped or shock is applied during transportation or handling, the output may not be in the initial state. Be sure to check the output status with a tester and if it is not in the initial state, turn the power on/off and reset the set time.

GT3S-1/GT3S-2 (8-Pin)

Star-Delta Output Mode

(1) Operation Mode	Rated Voltage	Time Range	Output	Contact	Part No.
Star-Delta	100 to 240V AC	Star: 0.05 to 100 sec Star-Delta switching time 0.05 sec	250V AC/ 30V DC, 5A (resistive load)	Star: Delayed SPST-NO Delta: Delayed SPST-NO	GT3S-1AF20
		$\begin{aligned} & 0.10 \mathrm{sec} \\ & 0.25 \mathrm{sec} \\ & 0.50 \mathrm{sec} \end{aligned}$		Star: Delayed SPST-NO Delta: Delayed SPST-NO Instantaneous SPST-NO	GT3S-2AF20

Time Ranges

(1) Star Dial Selector		(2) Star-Delta Switching Time Selector	
Dial	Time Range	Indication	Time
$0-5$	$0.05 \mathrm{sec}-5 \mathrm{sec}$	0.05	0.05 sec
$0-10$	$0.1 \mathrm{sec}-10 \mathrm{sec}$	0.1	0.1 sec
$0-50$	$0.5 \mathrm{sec}-50 \mathrm{sec}$	0.25	0.25 sec
$0-100$	$1 \mathrm{sec}-100 \mathrm{sec}$	0.5	0.5 sec

Contact Ratings

Rated Load	$250 \mathrm{~V} \mathrm{AC} / 30 \mathrm{~V} \mathrm{DC}, \mathrm{5A} \mathrm{(resistive} \mathrm{load)}$ $250 \mathrm{~V} \mathrm{AC}, 1.5 \mathrm{~A} / 30 \mathrm{~V} D, 2 \mathrm{~A}$ (inductive load)
	AC: 1250 VA DC: 150 W
Maximum Switching Voltage	250 V AC/125V DC
Maximum Switching Current	5 A
Maximum Switching Frequency	600 operations/hour
Minimum Applicable Load	5 V DC, 100 mA (reference value)
External Protection Element	Fuse $250 \mathrm{~V}, 5 \mathrm{~A}$
Life	Electrical
	Mechanical

General Specifications

Operation System	Solid-state CMOS circuitry	
Operation	Star-delta	
Time Range	Star side: 0.05 sec to 100 sec Star delta switching time: $0.05,0.1,0.25,0.5 \mathrm{sec}$	
Pollution Degree	2 (IEC60664-1)	
Overvoltage Category	III (IEC60664-1)	
Rated Voltage	100 to 240V AC ($50 / 60 \mathrm{~Hz}$)	
Voltage Range	85 to 264V AC ($50 / 60 \mathrm{~Hz}$)	
Reset Voltage	Rated Voltage $\times 10 \%$ minimum	
Operating Temperature	-10 to $+50^{\circ} \mathrm{C}$ (no freezing)	
Storage Temperature	-30 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity	35 to 85\% RH (no condensation)	
Storage Humidity	35 to 85\% RH (no condensation)	
Altitude	0 to 2000 m (operation) 0 to 3000 m (transportation)	
Reset Time	500 ms maximum	
Repeat Error	$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)	
Voltage Error	$\pm 0.2 \%, \pm 30 \mathrm{~ms}$ (Note)	
Temperature Error	$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)	
Setting Error	$\pm 10 \%$ maximum	
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)	
Dielectric Strength	Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute	
Vibration Resistance	Damage limits/operating extremes: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions	
Shock Resistance	Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$, Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}$, 3 shocks each in 6 directions	
Degree of Protection	IP40 (timer), IP20 (socket) (IEC60529)	
Power Consumption (approx.)	GT3S-1AF20	GT3S-2AF20
	2.3VA (100V AC/60Hz)	2.3VA (100 V AC/60Hz)
	4.0VA (200V AC/60Hz)	3.8VA (200V AC/60Hz)
Dimensions	$40 \mathrm{H} \times 36 \mathrm{~W} \times 72.2 \mathrm{D} \mathrm{mm}$	
Weight (approx.)	GT3S-1AF20	GT3S-2AF20
	68 g	75 g

Note: The largest value becomes the error against a preset value depending on the time range.

Operation Chart

GT3W-A11, -A13, -A31, A33

Multi-range Twin-Timer with 8 operation modes

(1) Operation Mode	Rated Voltage	Time Ranges		Part No.
		T_{1}	T_{2}	
	100 to 240V AC	0.1 sec to 6 hours	0.1 sec to 6 hours	GT3W-A11AF20N
Coarse/Fine Adjustment	24 V AC/24V DC			GT3W-A11AD24N
Instantaneous Cycle	100 to 240V AC		0.1 sec to 300 hours	GT3W-A13AF20N
Cycle	24 V AC/24V DC			GT3W-A13AD24N
Cycle Inversion	100 to 240V AC	0.1 sec to 300 hours	0.1 sec to 6 hours	GT3W-A31AF20N
Interval ON	24 V AC/24V DC			GT3W-A31AD24N
Interval ON Delay	100 to 240V AC		0.1 sec to 300 hours	GT3W-A33AF20N
Sequential Interval	24 V AC/24V DC			GT3W-A33AD24N

Time Ranges

0.1 sec to 6 hours			0.1 sec to 300 hours		
Time Range Selector	Scale	Time Range	Time Range Selector	Scale	Time Range
1S	0-1	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 1 \mathrm{sec} \end{gathered}$	1S	0-3	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 3 \mathrm{sec} \end{gathered}$
10S		$\begin{gathered} 0.3 \mathrm{sec} \text { to } \\ 10 \mathrm{sec} \end{gathered}$	1M		$\begin{gathered} 3.8 \mathrm{sec} \text { to } \\ 3 \mathrm{~min} \end{gathered}$
10M		$\begin{aligned} & 15 \mathrm{sec} \text { to } \\ & 10 \mathrm{~min} \end{aligned}$	1H		3.8 min to 3 hours
1S	0-6	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 6 \mathrm{sec} \end{gathered}$	1 S	0-30	$\begin{gathered} 0.6 \mathrm{sec} \text { to } \\ 30 \mathrm{sec} \end{gathered}$
10S		$\begin{aligned} & 1.3 \mathrm{sec} \text { to } \\ & 60 \mathrm{sec} \end{aligned}$	1M		$\begin{aligned} & 38 \mathrm{sec} \text { to } \\ & 30 \mathrm{~min} \end{aligned}$
1M		$\begin{gathered} 7.5 \mathrm{sec} \text { to } \\ 1 \mathrm{~min} \end{gathered}$	1H		38 min to 30 hours
10M		75 sec to 60 min	10H		6.3 hours to 300 hours
1H		7.5 min to 6 hours			

Contact Ratings

Rated Load		240V AC, 3A (resistive load) 120 V AC/ 30V DC, 5 A (resistive load)
Maximum Switching Power		AC: 960VA DC: 120W
Maximum Switching Voltage		250V AC/150V DC
Maximum Switching Current		5A
Maximum Switching Frequency		600 operations/hour
Minimum Applicable Load		5 V DC, 10 mA (reference value)
External Protection Element		Fuse 250V, 5A
Life	Electrical	100,000 operations minimum (rated load)
	Mechanical	20,000,000 operations minimum

General Specifications

Operation System		Solid-state CMOS circuitry
Operation		Multi-Mode
Time Range		0.1 sec to 300 hours
Pollution Degree		2 (IEC60664-1)
Overvoltage Category		III (IEC60664-1)
Rated Range	AF20	100 to 240 V AC ($50 / 60 \mathrm{~Hz}$)
	AD24	$24 \mathrm{~V} \mathrm{AC} \mathrm{(50/60Hz)/} \mathrm{24V} \mathrm{DC}$
Voltage Range	AF20	85 to 264V AC (50/60Hz)
	AD24	20.4 to 26.4V AC (50/60Hz)/21.6 to 26.4V DC
Reset Voltage		Rated voltage $\times 10 \%$ minimum
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing)
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		35 to 85\% RH (no condensation)
Storage Humidity		35 to 85\% RH (no condensation)
Altitude		0 to 2000 m (operation) 0 to 3000m (transportation)
Reset Time		60 ms maximum
Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Voltage Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$ (Note)
Temperature Error		$\pm 0.6 \%, \pm 10 \mathrm{~ms}$ (Note)
Setting Error		$\pm 10 \%$
Insulation Resistance		100 M ת minimum (500V DC megger)
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 750V AC, 1 minute
Vibration Resistance		Damage limits/operating extremes: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits: 490 v 3 shocks each in 6 directions
Degree of Protection		IP40 (timer), IP20 (socket) (IEC60529)
Power Consumption (approx.)	AF20	2.6 VA (100 V AC /60Hz), 5.1VA (200V AC /60Hz)
	AD24	1.8 VA (AC)/0.9W (DC)
Dimensions		$40 \mathrm{H} \times 36 \mathrm{~W} \times 70.0 \mathrm{D} \mathrm{mm}$
Weight (approx.)		73 g

Note: The largest value becomes the error against a preset value depending on the time range.

Operation Chart

Applicable Sockets \& Hold-Down Springs (Optional)

DIN Rail Mount Socket

Item		Part No.	Ordering No.	Applicable Timer	Package Quantity	Remarks
Socket	8-Pin Screw Terminal	SR2P-06B	SR2P-06B	GT3A-1/2/3, GT3F, GT3S, GT3W	1	Hold-down spring: SFA-202 (2 pcs.)
	11-Pin Screw Terminal	SR3P-05B	SR3P-05B	GT3A-4/5/6	1	Hold-down spring: SFA-203 (2 pcs.)
		SR3P-06B	SR3P-06B		1	Hold-down spring: SFA-202 (2 pcs.)
		SR3P-05C	SR3P-05C		1	Finger-safe
Hold-Down Spring		SFA-202	SFA-202PN20	-	10 sets (20 pcs)	For SR2P-06A/SR3P-06A (2 pcs/set)
		SFA-203	SFA-203PN20	-	10 sets (20 pcs)	For SR3P-05A (2 pcs/set)

Note: All are UL recognized, CSA certified, and TÜV approved.

SR2P-06B

SR3P-05B

SR3P-06B

SFA-202 (2 pcs/set)

SFA-203 (2 pcs/set)

Panel Mount Socket

Item		Part No.	Ordering No.	Applicable Timer	Package Quantity	Remarks
Socket	8-Pin Solder Terminal	SR2P-511	SR2P-511	GT3A-1/2/3, GT3F, GT3S, GT3W	1	-
	11-Pin Solder Terminal	SR3P-511	SR3P-511	GT3A-4/5/6	1	-
Hold-Down Spring		SFA-402	SFA-402PN10	-	10	For SR2P-511/SR3P-511

Note: SR2P-511 and SR3P-511 are UL recognized and CSA certified.
SR2P-511

SR3P-511

SFA-402

Panel Mount Adapter and wiring Socket Adapter

Package Quantity: 1			
Item			Part No.
DIN 48mm Square Panel Mount Adapter		Color: Gray	RTB-G01
		Color: Beige	RTB-M01
		Color: Black	RTB-B01
Wiring Socket Adapter	8-Pin Solder Terminal		SR6P-S08
	8-Pin Screw Terminal		SR6P-M08G
	11-Pin Solder Terminal		SR6P-S11
	11-Pin Screw Terminal		SR6P-M11G

- Finger-safe 11-pin screw wiring socket adapter (Part No.: SR6P-C11) is also available.
(8-pin Wiring Socket Adapter)
SR6P-S08

(8-pin Screw Wiring Socket Adapter) SR6P-M08G

(Panel Mount Socket)

Note: Once installed into the socket, the hold-down springs cannot be removed.

When Using DIN Rail Mount Socket

GT3A-1, -2, -3/GT3F/GT3S (8-pin)
(SR2P-06B Socket)

GT3W

- Calculate the dimensions for mounting, referring to the diagrams of SR2P-06A on Relay Sockets catalog.

GT3A-4, -5, -6 (11-pin)

(SR3P-05C Socket)

(SR3P-06B Socket)

- Calculate the dimensions for mounting, referring to the diagrams in Relay Sockets catalog for SR3P-05A, SR3P-05C, and SR3P-06A.
[Internal Connections]

GT3A-1

GT3A-4

GT3A-3

GT3A-6

GT3F-2

GT3S-1

GT3S-2

GT3W

When Using Panel Mount Socket

GT3A-1, -2, -3/GT3F/GT3S/GT3W (8-pin)
(SR2P-511 Socket)

GT3A-4, -5, -6
(SR3P-511 Socket)

All GT3 Series

When using DIN 48mm-square Panel Mount Adapter

(For 8-pin solder wiring socket adapter: SR6P-S08 and 11-pin solder wiring socket adapter: SR6P-S11)

(8-pin Screw Terminal Wiring Socket Adapter: SR6P-M08G)

(11-pin Screw Terminal Wiring Socket Adapter: SR6P-M11G)

(Finger-safe 11-pin Screw Terminal Wiring Socket Adapter: SR6P-C11)

Finger-safe structure complies with VDE 0106 T. 100.
(Mounting Hole Layout)

Tolerance: +0.5 to 0 N : No. of timers mounted

. Safety Precautions

- Be sure to turn off power before mounting, removal, wiring, maintenance and inspection. Otherwise, electric shock or fire may occur.
- Be sure to use timers within rated specification values. Otherwise electric shock or fire may occur.
- Be sure to use wires to meet voltage and current requirements and tighten M3.5 terminal screws to a torque of 1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$. Be sure to solder the terminals correctly. Loose terminal screws or incomplete soldering may cause abnormal heat and fire.

Instructions

Mode Setting

GT3A only

The operation mode can be selected from A, B, C, and D modes using the Operation Mode Selector. The operation mode is changed from A to B, C, and D in turn by turning the Operation Mode Selector clockwise using a flat screwdriver 4 mm wide maximum and the selected mode is displayed in the window. Since this selector does not turn infinitely, turn the selector clockwise when Mode A is displayed and counterclockwise when Mode D is displayed.

Mode Code and Operation Mode

MODE Code	GT3A-1, -2, -3	GT3A-4	GT3A-5	GT3A-6
A	ON Delay	ON Delay	Interval ON	One-Shot
B	Interval ON	Cycle	One Shot Cycle	One-Shot ON Delay
C	Cycle	Signal ON/OFF Delay	Signal ON/OFF Delay	One-Shot
D	Cycle ON	Signal OFF Delay	Signal OFF Delay	Signal ON/OFF Delay

Time Range Setting

The time range is calibrated at its maximum time scale, therefore, it is desirable to use the timer at a setting as close to its maximum time scale as possible for accurate time delay. For a more accurate time delay, adjust the setting knob by measuring the operating time before application.

1. GT3A (Multi-Mode Analog Setting)

Time range can be selected from 1S, 10S, 10M, and 10H by turning the Time Range Selector with a flat screwdriver 4 mm wide maximum. The four different ranges of 0 to 1,0 to 3,0 to 6 , and 0 to 18 are displayed in the six windows by turning the Dial Selector, allowing for selecting the best suited scale. Since the selectors do not turn infinitely, turn the selectors clockwise when 1S or 0-1 is displayed and counterclockwise when 10 H or $0-18$ is displayed.

Time Range Determined by Time Range Selector and Dial Selector

Dial Time Range	$0-1$	$0-3$	$0-6$	$0-18$
1 S	0.1 sec to 1 sec	0.1 sec to 3 sec	0.1 sec to 6 sec	0.2 sec to 18 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	0.6 sec to 60 sec	1.8 sec to 180 sec
10 M	6 sec to 10 min	18 sec to 30 min	36 sec to 60 min	108 sec to 180 min
10 H	6 min to 10 hours	18 min to 30 hours	36 min to 60 hours	108 min to 180 hours

The set time is selected by turning the setting knob.
[Setting Examples]

- When the setting knob is set at 1.5 , with dial 0-3 and time range 10 S selected, then the set time is $15 \mathrm{sec}(1.5 \times 10 \mathrm{~S})$.
- When the setting knob is set at 0.2 , with dial $0-1$ and time range 10 H selected, then the set time is 2 hours $(0.2 \times 10 \mathrm{H})$.

2. GT3F (OFF Delay)

The time range of GT3F-1 and GT3F-2 can be selected between 1S and 10S with the Time Range Selector by using a flat screw driver. The selected time range ($0-1,0-3,0-18$, or $0-60$) is displayed in the six windows of the Setting Knob by turning Dial Selector which allows to set the scale. Note that the switches do not turn infinitely.
Time Range Determined by Time Range Selector and Dial Selector

(2) Range (1) Dial	$0-1$	$0-3$	$0-18$	$0-60$
1 S	0.1 sec to 1 sec	0.1 sec to 3 sec	0.2 sec to 18 sec	0.6 sec to 60 sec
10 S	0.1 sec to 10 sec	0.3 sec to 30 sec	1.8 sec to 180 sec	6 sec to 600 sec

The set time is selected by turning the Setting Knob.
[Setting Examples]

- When the setting knob is set at 2.5 , with dial 0-3 and range 1 S selected, then the set time is $2.5 \mathrm{sec}(2.5 \times 1 \mathrm{~S})$.
- When the setting knob is set at 15 , with dial 0-18 and range 10 S selected, then the set time is $150 \sec (15 \times 10 \mathrm{~S})$.

Instructions

3. GT3S (Star-Delta)

The scale range on the star side can be selected from four different ranges of 0 to 5,0 to 10,0 to 50 , and 0 to 100 displayed in the six windows by turning the Star Dial Selector. Note that the selectors does not turn infinitely.

Time Range Determined by Time Range Selector and Dial Selector

Star Dial Selector		Star-Delta Switching Time Selector	
Dial	Time Range	Indication	Time
$0-5$	0.05 sec -5 sec	0.05	0.05 sec
$0-10$	$0.1 \mathrm{sec}-10 \mathrm{sec}$	0.1	0.1 sec
$0-50$	$0.3 \mathrm{sec}-50 \mathrm{sec}$	0.25	0.25 sec
$0-100$	1 sec -100 sec	0.5	0.5 sec

The Star ON time is selected by turning the Setting Knob.
[Setting Examples]

- If the setting knob is set at 8 , with Star Dial Selector 0-10 and StarDelta switching time 0.1 S selected, the Star ON time (T_{1}) is 8 sec and the Star-Delta switching time (T_{2}) is 0.1 sec .

4. GT3W [Twin-Timer]

Use a flat screwdriver with a diameter of 4 mm maximum to turn Time Range Selector and gain time range as shown in the table below. Note that the selectors do not turn infinitely.

Time Range Determined by Time Range Selector and Dial Selector

0.1 sec to 6 hours			0.1 sec to 300 hours		
Time Range Selector	Scale	Time Range	Time Range Selector	Scale	Time Range
1S	0-1	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 1 \mathrm{sec} \end{gathered}$	1 S	0-3	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 3 \mathrm{sec} \end{gathered}$
10S		$\begin{gathered} 0.3 \mathrm{sec} \text { to } \\ 10 \mathrm{sec} \end{gathered}$	1M		$\begin{gathered} 3.8 \mathrm{sec} \text { to } \\ 3 \mathrm{~min} \end{gathered}$
10M		$\begin{aligned} & 15 \mathrm{sec} \text { to } \\ & 10 \mathrm{~min} \end{aligned}$	1H		3.8 min to 3 hours
1 S	0-6	$\begin{gathered} 0.1 \mathrm{sec} \text { to } \\ 6 \mathrm{sec} \end{gathered}$	1 S	0-30	$\begin{gathered} 0.6 \mathrm{sec} \text { to } \\ 30 \mathrm{sec} \end{gathered}$
10S		1.3 sec to 60 sec	1M		38 sec to 30 min
1M		$\begin{gathered} 7.5 \mathrm{sec} \text { to } \\ 1 \mathrm{~min} \end{gathered}$	1H		38 min to 30 hours
10M		$\begin{aligned} & 75 \mathrm{sec} \text { to } \\ & 60 \mathrm{~min} \end{aligned}$	10H		6.3 hours to 300 hours
1H		7.5 min to 6 hours			

Note: No blank time range can be set.

Selector Setting

- Use a flat screwdriver with a diameter of 4 mm maximum to turn the selector. Turn the selector until it clicks. Otherwise, malfunction may occur. Also, do not rotate the selector forcibly since the selector does not turn infinitely.
- Since changing the setting during operation may cause malfunction, turn power off before changing the setting.

Power

- Since DC types have a polarity in their power supply connection, connect the power according to wiring diagram.
- Since AC type GT3A, GT3S, and GT3W comprise a capacitive load, the SSR dielectric strength should be two or more times as large as the power voltage when switching the timer power using an SSR.

Wiring

The GT3F, consisting of a high-impedance circuit, may not be reset due to the influence of an inductive voltage or residual voltage caused by a leakage current. In not reset, connect an RC filter or bleeder resistor between power terminals so that the voltage between power terminals can be reduced to less than 15% of the rated voltage.

Instructions

Inputs of GT3A and GT3F

To avoid electric shock, do not touch the input signal terminal during power voltage application.

- When connecting the input signal terminals of two or more GT3A timers to the same contact or transistor, the input terminals of the same number should be connected. (Connect Terminals No. 2 in common.)
- Never apply the input signals to two or more GT3F timers using the same contact or transistor.

- In a transistor circuit for controlling input signals with its primary and secondary power circuits isolated, do not ground the secondary circuit.

- Do not connect input signal terminals of the GT3A timer to other terminals than $N o$. 2. Never apply voltage to input signal terminals. Otherwise, the internal circuit may be damaged.

- Do not connect input signal terminals of the GT3F timer to other terminals than No. 2. Never apply voltage to input signal terminals. Otherwise, the internal circuit may be damaged.
- Input signal lines must be made as short as possible and installed away from power cables and power lines. Shielded wires or a separate conduit should be used for input wiring.
- For contact input, use reliable gold-plated contacts to make sure that the residual voltage is less than 1 V when the contacts are closed.

- For transistor input, use transistors with following specifications; VCE $=40 \mathrm{~V}, \mathrm{~V}$ CES $=1 \mathrm{~V}$ or less, $\mathrm{Ic}=50 \mathrm{~mA}$ or more, IcBo $=50 \mu \mathrm{~A}$ or less. The resistance should be less than $1 \mathrm{k} \Omega$ when the transistor is on. When the output transistor switches on, a signal is inputted to the timer.

GT3A

Transistor output equipment such as proximity switches and photoelectric switches can input signals if they are voltage/current output type, power voltage ranges from 18 to 30 V , and residual voltage is 1 V . When the signal voltage switches from H to L , a signal is inputted to the timer.

GT3F
Do not input signals using transistor output equipment of a voltage/ current output type. Otherwise, the internal circuit may be damaged.

Minimum Power Application Time

If the power application time to the GT3F is shorter than the minimum power application time, the output relay may not operate or the timer may operate faster than the preset time.

Time Range Setting

Repeat error is calibrated at its maximum time scale, therefore, it is desirable to use the timer at a setting as close to its maximum time scale as possible for accurate time delay. For a more accurate time delay, adjust the setting knob by measuring the operating time before application.

Time Accuracy

Repeat Error

This indicates variance of operation time when operation is repeated under the same conditions. The variance is calculated from the following formula and the measurements should be done 5 times at least.

$$
= \pm \frac{1}{2} \times \frac{\text { Max. measured value }- \text { Min. measured value }}{\text { Maximum scale value }} \times 100(\%)
$$

Voltage Error

This indicates the variance of operation time when the voltage at operation current varies within allowable voltage variance.
$= \pm \frac{\mathrm{Tv}-\mathrm{Tr}}{\mathrm{Tr}} \times 100$ (\%)
Tv: Average of measured operation time values at voltage V
Tr : Average of measured operation time values at the raged voltage

Temperature Error

This indicates the influence caused by the change in temperature during operation within operating temperature. This is shown with the variance of operation time.
$= \pm \frac{\mathrm{Tv}-\mathrm{Tr}}{\mathrm{Tr}} \times 100$ (\%)
Tv: Average of measured operation time values at voltage V
Tr : Average of measured operation time values at the raged voltage

Setting Error

This indicates the deviation, range, and gap between actual operation time and that on scale.
$= \pm \frac{\text { Average of measured values }- \text { Set value }}{\text { Maximum scale value }} \times 100(\%)$
Ex.)
GT3 setting error: $\pm 10 \%$
When the maximum scale value is 10 sec . and setting time is 1 to 3 sec ., the setting error ia $\pm 1 \mathrm{sec}$. and operating time is 1 to 3 sec . When setting a value near the lower limit, be sure to confirm the actual operating time.

Instructions

Load Current

The rated current of the contact (or control output) should not be exceeded. Especially for inductive, capacitive, and incandescent lamp loads, the inrush current as large as a few to several tens times the rated current may cause welded contacts and other troubles. The amount of inrush current as well as steady-state current must be taken into consideration.

Contact Protection

Switching an inductive load generates a counter-electromotive force in the coil. The counter emf will cause arcing, which may shorten the contact life. Application of a protection circuit is recommended for contact protection.

Rest Time

When turning power off after time-out or during operation, allow a rest time longer than the reset time to restart. (Each model has a different reset time.)

Continuous Energizing

Continuous energizing for a long period of time may damage the electrical characteristics of the timer because of internal heating. Use an additional relay to the output circuit and refrain from continuous energizing of the timer.

Dielectric Strength Test

When performing an insulation resistance or dielectric-strength test on control panels containing timers, make sure that the dielectric strength of the timer is not exceeded. In case the dielectric strength is exceeded, remove the timers from the panels.

Operating Environment

Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing and condensation. After storing below the operation temperature, leave the timer at room
temperature for a sufficient period of time before use.

Environment

Prevent a corrosive gas such as sulfurous or ammonia gas, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances or strong acids from touching to the timer, and do not use the timer in such an environment. Keep the timer from water splashes or steam.

Vibration and Shock

Since excessive vibrations or shocks cause the output contacts to open, the timer should be used within the operating extremes of vibration and shock resistance. Use of hold-down springs is recommended for secure mounting on sockets.

Noise and Static Charge

Check the operation of the timer before using in an environment with a lot of noise. Install the input signal source, input signal wiring and timer away from noise source and high-voltage wire with noise as much as possible. Also, in case of using the timer under the environment with multiple static charge (pipe transportation of molding material, power/liquid material, etc.), place the timer away from such static charge source as well.

Others

- The GT3F does not read the preset values of each selector after power is turned off. Note that minimizing the preset time does not shorten the delay time after power is turned off.
- To make a sequence circuit by connecting timers and relays, check the timer operation sufficiently in consideration of the reset time of the timer.
- Storage temperature should range from $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the product has been stored at a temperature below $-10^{\circ} \mathrm{C}$, leave the product at room temperatures for more than 3 hours before using.
- Do not remove the housing.
- In the GT3F timers, latching relay is used for output relay. Shocks such as dropping during transportation or handling may cause the output to be different from the initial value. Be sure to check the output status using a tester.
Check the output status with a tester. If it is not in the initial state, turn the power on/off and reset the set time.

Thank you for using IDEC Products.
By purchasing products listed in our catalogs, datasheets, and the like (hereinafter referred to as "Catalogs") you agree to be bound by these terms and conditions. Please read and agree to the terms and conditions before placing your order.

1. Notes on contents of Catalogs

(1) Rated values, performance values, and specification values of IDEC products listed in this Catalog are values acquired under respective conditions in independent testing, and do not guarantee values gained in combined conditions.
Also, durability varies depending on the usage environment and usage conditions.
(2) Reference data and reference values listed in Catalogs are for reference purposes only, and do not guarantee that the product will always operate appropriately in that range.
(3) The specifications / appearance and accessories of IDEC products listed in Catalogs are subject to change or termination of sales without notice, for improvement or other reasons.
(4) The content of Catalogs is subject to change without notice.

2. Note on applications

(1) If using IDEC products in combination with other products, confirm the applicable laws / regulations and standards.
Also, confirm that IDEC products are compatible with your systems, machines, devices, and the like by using under the actual conditions. IDEC shall bear no liability whatsoever regarding the compatibility with IDEC products.
(2) The usage examples and application examples listed in Catalogs are for reference purposes only. Therefore, when introducing a product, confirm the performance and safety of the instruments, devices, and the like before use. Furthermore, regarding these examples, IDEC does not grant license to use IDEC products to you, and IDEC offers no warranties regarding the ownership of intellectual property rights or non-infringement upon the intellectual property rights of third parties.
(3) When using IDEC products, be cautious when implementing the following. i. Use of IDEC products with sufficient allowance for rating and performance
ii. Safety design, including redundant design and malfunction prevention design that prevents other danger and damage even in the event that an IDEC product fails
iii. Wiring and installation that ensures the IDEC product used in your system, machine, device, or the like can perform and function according to its specifications
(4) Continuing to use an IDEC product even after the performance has deteriorated can result in abnormal heat, smoke, fires, and the like due to insulation deterioration or the like. Perform periodic maintenance for IDEC products and the systems, machines, devices, and the like in which they are used.
(5) IDEC products are developed and manufactured as general-purpose products for general industrial products. They are not intended for use in the following applications, and in the event that you use an IDEC product for these applications, unless otherwise agreed upon between you and IDEC, IDEC shall provide no guarantees whatsoever regarding IDEC products.
i. Use in applications that require a high degree of safety, including nuclear power control equipment, transportation equipment (railroads / airplanes / ships / vehicles / vehicle instruments, etc.), equipment for use in outer space, elevating equipment, medical instruments, safety devices, or any other equipment, instruments, or the like that could endanger life or human health
ii. Use in applications that require a high degree of reliability, such as provision systems for gas / waterworks / electricity, etc., systems that operate continuously for 24 hours, and settlement systems
iii. Use in applications where the product may be handled or used deviating from the specifications or conditions / environment listed in the Catalogs, such as equipment used outdoors or applications in environments subject to chemical pollution or electromagnetic interference If you would like to use IDEC products in the above applications, be sure to consult with an IDEC sales representative.

3. Inspections

We ask that you implement inspections for IDEC products you purchase without delay, as well as thoroughly keep in mind management/maintenance regarding handling of the product before and during the inspection.

4. Warranty

(1) Warranty period

The warranty period for IDEC products shall be one (1) year after purchase or delivery to the specified location. However, this shall not apply in cases where there is a different specification in the Catalogs or there is another agreement in place between you and IDEC.
(2) Warranty scope

Should a failure occur in an IDEC product during the above warranty period for reasons attributable to IDEC, then IDEC shall replace or repair that product, free of charge, at the purchase location / delivery location of the product, or an IDEC service base. However, failures caused by the following reasons shall be deemed outside the scope of this warranty.
i. The product was handled or used deviating from the conditions / environment listed in the Catalogs
ii. The failure was caused by reasons other than an IDEC product
iii. Modification or repair was performed by a party other than IDEC
iv. The failure was caused by a software program of a party other than IDEC
v. The product was used outside of its original purpose
vi. Replacement of maintenance parts, installation of accessories, or the like was not performed properly in accordance with the user's manual and Catalogs
vii. The failure could not have been predicted with the scientific and technical standards at the time when the product was shipped from IDEC
viii. The failure was due to other causes not attributable to IDEC (including cases of force majeure such as natural disasters and other disasters)
Furthermore, the warranty described here refers to a warranty on the IDEC product as a unit, and damages induced by the failure of an IDEC product are excluded from this warranty.

5. Limitation of liability

The warranty listed in this Agreement is the full and complete warranty for IDEC products, and IDEC shall bear no liability whatsoever regarding special damages, indirect damages, incidental damages, or passive damages that occurred due to an IDEC product.

6. Service scope

The prices of IDEC products do not include the cost of services, such as dispatching technicians. Therefore, separate fees are required in the following cases.
(1) Instructions for installation / adjustment and accompaniment at test operation (including creating application software and testing operation, etc.)
(2) Maintenance inspections, adjustments, and repairs
(3) Technical instructions and technical training
(4) Product tests or inspections specified by you

The above content assumes transactions and usage within your region. Please consult with an IDEC sales representative regarding transactions and usage outside of your region. Also, IDEC provides no guarantees whatsoever regarding IDEC products sold outside your region.

USA EMEA	IDEC Corporation APEM SAS	Singapore	IDEC Izumi Asia Pte. Ltd.	China	IDEC (Shanghai) Corporation	Japan	IDEC Corporation
		Thailand	IDEC Asia (Thailand) Co., Ltd.		IDEC Izumi (H.K.) Co., Ltd.		
		India	IDEC Controls India Private Ltd.	Taiwan	IDEC Taiwan Corporation		

